Thursday, August 2, 2007

What is axis aligned bounding box?

In computer graphics and computational geometry, a bounding volume for a set of objects is a closed volume that completely contains the union of the objects in the set. Bounding volumes are used to improve the efficiency of geometrical operations by using simple volumes to contain more complex objects. Normally, simpler volumes have simpler ways to test for overlap.

A bounding volume for a set of objects is also a bounding volume for the single object consisting of their union, and the other way around. Therefore it is possible to confine the description to thBounding volumes are most often used to accelerate certain kinds of tests.
In ray tracing, bounding volumes are used in ray-intersection tests, and in many rendering algorithms, it is used for viewing frustum tests. If the ray or viewing frustum does not intersect the bounding volume, it cannot intersect the object contained in the volume. These intersection tests produce a list of objects that must be displayed. Here, displayed means rendered or rasterized.

In collision detection, when two bounding volumes do not intersect, then the contained objects cannot collide, either.
Testing against a bounding volume is typically much faster than testing against the object itself, because of the bounding volume's simpler geometry. This is because an 'object' is typically composed of polygons or data structures that are reduced to polygonal approximations. In either case, it is computationally wasteful to test each polygon against the view volume if the object is not visible. (Onscreen objects must be 'clipped' to the screen, regardless of whether their surfaces are actually visible.)

To obtain bounding volumes of complex objects, a common way is to break the objects/scene down using a scene graph or more specifically bounding volume hierarchies like e.g. OBB trees. The basic idea behind this is to organize a scene in a tree-like structure where the root comprises the whole scene and each leaf contains a smaller subpart.e case of a single object, which is assumed to be non-empty and bounded (finite).

No comments: